Design and Implementation of a Transduction System
for the Measurement of a Weakly Nonlinear Mechanical
Oscillator

Group 3: Paul Gennaro, Patrick Koczela, Byron Miller, & David Miller
ME310, Professor Farny

April 27, 2015

1 Introduction

A scientific theory is only good if it can be backed by experimental data. In this project,
the theory behind a 2nd Order mechanical system will be compared to experimental data
collected via digital data acquisition. This will be accomplished by following a transduction
scheme created by our group. The results of this project showed that, within uncertainty, the
scientific theory behind 2nd order mechanical systems applies to the mechanical oscillator
under consideration.

2 Theory

2.1 2nd Order System Theory

Few concepts in engineering provide the mathematical elegance and complexity that a 2nd
Order System does. The concept of a 2nd Order System, which is a system that is modeled
by a first and second derivative of the system’s characterizing variable, was originally de-
veloped in the 18th Century alongside calculus and classical mechanics. The model is now
used to describe countless number of phenomena: double pendulums, RLC Circuits, and
economic cycles, just to name a few. For this project, the model of a 2nd Order System will
be applied to two masses coupled by a spring with damping.

Figure 1: Two masses coupled by a spring. [3]

In this system, a known displacement is applied to the bottom mass mb which is attached
to a spring with a mass m on top. The goal of the model is to know the displacement of
the top mass as a function of time: x(¢). The spring has both a spring constant k and a

damping constant c¢. The forces on the top mass caused by the spring and the damping are
linear:

F, = —kAx (1)
F, = —ci (2)

The spring force will always act opposite of the displacement of the top mass and the
damping force will always act opposite the velocity of the top mass. By applying Newton’s
Second Law, which states that the sum of the forces on an object is equal to its mass times
its acceleration, to the vertical direction (which is the x-axis) of the spring system, we get:

ZF:mi:—cx'—kAx (3)

By noting that the change in spring length is the difference between the top mass as the
bottom mass (Ax = = — x3), Equation 3 can be rearranged into the form of a 2nd Order
Differential Equation:

mi + ct + kx = kxy (4)

For this lab, x; is a known input displacement on the bottom mass. The mass is attached
to a motor which moves sinusoidally with some variable frequency w and some displacement
amplitude Xb. Thus the bottom displacement is x, = Xjsin(wt), so the entire system can
be described:

mi + ci + kx = kXpsin(wt) (5)

Now that the system is described as a 2nd Order Differential Equation, x(t) can be solved
for. In order to solve for x(t), we rewrite Equation 5 using complex exponentials, noting
that Im{e™'} = sin(wt):

mi + ct + kx = kX,e™" (6)

In using Equation 6 to solve for z(t), we only use the imaginary part of the solution
because it is only the imaginary input that we care about. Let us assume linearity so we
have a pure harmonic time dependence:

z(t) = Xe™! (7)

By taking the first and second time derivatives of Equation 7 and plugging them into
Equation 8 we get:

i(t) = iwXe™ ®)
.T(t) = —i2w2X€th = —w2Xeth (9)
(7,8,9) — (6): (—mw?* +iwe + k) Xe™' = kXe™! (10)
Rearranging Equation 10:
X
X ()

k — mw? + icw

Multiplying the top and bottom by the complex conjugate we get:

k — mw? cw

X = ey @) T e ()

(12)

Noting the properties of complex numbers, Equation 12 fits the type of expression a+1b =
Ae™ where A = v/a? + b? and ® = arctan(a/b), so:

kXy
* = V(k —mw?)? + (cw)2e@ (13)

If we divide the top and bottom by k and defining the natural frequency w, and damping
ratio (:

We can write:

X .
X = b e'® (16)

(-)« ()]

For convenience, we can write the magnitude ratio which is the ratio of input and output
magnitudes:

X 1 .
=M= e (17)

P))]

From the definition of ®, we can write:

202
P — i _Den
arctan(b) arctan(l v)2> (18)

Wn

Now we have all the information required to write a complete steady-state solution from
our original assumptions:

z(t) = Im{Xe“'} = Im{M X"} = M Xsin(wt + P) (19)

In summary, the 2nd Order System in the project can be modeled with the following
equations from the derivation above:

mi + ct + kx = kEXpsin(wt)
x(t) = M Xpsin(wt + @)
1

(- @)+ ()T

2¢
P = arctan(%)
1-(2)

k

Wn =1\ —

m
C:

C

2vVmk

Upon observation, the system response is dependent on two variables, the magnitude
ratio M and the phase lag ®. Those two variables are not constant for all inputs or all
second order systems, but rather they are dependent on two system characteristics and one
input characteristic: the natural frequency w, the damping ratio {, and the input frequency
w. For engineers, it is helpful to look at a system’s response as a function of input frequency
and damping ratio.

Magnitude Ratio as a Function of Frequency Ratio

Phase Lag as a Function of Frequency Ratio
T

! T T T
: ¢ I Ratio =0.2
L ; : |Damping Ratio =0 Damping Ratio
45 ‘ ; ; : ; ¥

Magnitude Ratio M
Phase Shift (rad)

e, 35 i I I I i i I I
0 05 1 15 2 2 3 35 4 45 5 0 05 1 15 2 25 ! 3 35 4 45 5
Frequency Ratio (@fmn) Frequency Ratio (ofon)

(a) Magnitude Ratio (b) Phase Shift

Figure 2: Magnitude ratio and phase shift vs. normalized frequency; multiple damping ratios
plotted.

2.2 Transducer Theory

In order to measure the behavior of the spring-mass system, a transducer needed to be
attached to the top mass to measure its displacement. For this project, a capacitive micro-
machined accelerometer was used. If the acceleration of the top mass is known as a function
of time, then we can integrate the acceleration twice to determine position. (This process
will be discussed more thoroughly in the Analysis and Results section.)

There are several ways to design a digital accelerometer, but all serve the same general
purpose: output a change in voltage given a change in acceleration. The accelerometer used
in this project is a capacitive micromachined accelerometer designed by Silicon Designs Inc.,
Model 2210. A capacitive micromachined accelerometer works by measuring the voltage
across a small capacitor. By attaching one side of the capacitor to a base and leaving the
other side free to move, the mass that is free to move will change position with acceleration.
The particular model being used in the project is nitrogen damped, meaning the capacitor
is incased in a housing filled with nitrogen gas, causing the damping. By changing posi-
tion, the capacitance and thus the voltage will change. Through signal conditioning, the
accelerometer outputs a voltage for a given acceleration.

A capacitive micromachined accelerometer generally has a high sensitivity compared to
other accelerometers, such as piezoelectric accelerometers. Multiple capacitors can be placed
in a sensor to measure acceleration in more than one axis. The particular accelerometer
used in the project designed by Silicon Designs Inc. is a single axis accelerometer, so the
acceleration is only measured in one direction.

Supply

Volage
Regulator |_| |—|

Signal
Conditioning

[Capacitor
Measurement

Output

Figure 3: Block diagram of the accelerometer used in the project.[2]

Figure 4: Picture of Silicon Designs Inc., Model 2210 Capacitive Micromachined Accelerom-
eter.

3 Methods and Materials

Prior to accelerometer data collection and analysis of the oscillator, several parameters
needed to be determined. The experimental methods for determining those parameters

7

are described in this section.

In order to determine the spring constant k, a calibration was performed. A round metal
plate was fitted to the collar [upper mass| and secured with screws. To measure the spring
constant, masses were placed upon the metal plate in 100g [gram] increments and the de-
flection was measured until 1000 grams was reached. After reaching 1000g, we repeated
the process, decrementing by 100g and measuring the displacement until reaching 0g. This
allowed hysteresis error to be observed and accounted for in the uncertainty analysis.

Next, we calibrated the accelerometer. We had three control points for the calibration:
-1g [acceleration], Og, and +1g. To do this, we placed the accelerometer upside down for -1g,
on its side for Og, and right side up for +1g.

The final experimental parameter was to measure the total linear displacement of the lower
mass. To do this, a ruler was used to measure the difference between the bottom surface of
the lower mass in its lowest position, and the bottom surface of the lower mass at it highest
position.

Once these parameters were determined, accelerometer data could be collected and sub-
sequently analyzed. Accelerometer data were collected using a DAQ board and a MATLAB
script to save the data. Data were collected for several several motor frequencies. To ob-
serve hysteresis, a ramp-up/ramp-down procedure was used, similar to the spring constant
procedure.

The analysis was performed with the aid of a MATLAB Graphical User Interface (GUI).
The GUI allows us to easily visualize results for particular datasets. This ability to visualize
the data and results allowed us to quickly determine the quality of our data, if there were
any problems in the analysis, and most importantly, if the results were acceptable or if more
data needed to be taken. Each step in the block diagram in Figure 5 was its own function
nested in the GUI that was independently verified with user generated fake data.

Once data had been loaded into the GUI, the “Analyze” button executed all of the functions
as seen in the block diagram. For analyzing multiple datasets, the “Analyze All” button
is pressed. This brings up a subgui (Figure 6b) that allows the user to analyze multiple
datasets in a for loop. This requires that all the datasets have the same ‘root’ filename, and
only vary by a substring in the filename containing a number. To analyze the data, selected
datasets were visualized using the “Analyze” button. Once it was confirmed that the results
for the selected datasets were acceptable, all the datasets could be analyzed at once using
the “Analyze All” button.

MATLAE Analysis GUI

s

r h
Calibration:
Accelerometer »| DAQ Board » Bandpass Filter > » v(t) =[a(t)dt
alt)=KV()+0
am y v y
FFT FFT High Pass Filter
l v
feignal
x(t) =fv(t)dt
Max
Displacement
Figure 5: Block diagram of experimental setup.
 Losd RawDR : s [lostRewDan—— @ 00 <sudent ersions Flowe 2 rabvze Al
Filename (wit extension) i . ! i ! 1 ! i Fiename (i extnsion) File Edit View Insert Tools Desktoj Window Help | | T T H
AL RRL A R 111111 {14111
SR : w‘ e i R FAN i O o N FAN
s ey SRR UL LR AR LA wm | Ao) AR AR
. £ VUV YN YUV YN VIV N YUY o IANRAERARY
(Raaize) [Analyzo it [save | (Anahzs | (mnaiyzo | [save |
o AAWAAMAAAAVAAY - | — o WAV
H F ol H 2ol
: E : E
o] M/\/i N — o] M/\/i R —

(a) The main GUI window allowed for analyzing(b) Multiple datasets could also be analyzed in
and visualizing individual datasets. this subgui.

Figure 6: Screenshots of the GUI being used for data analysis.

4 Equipment List

Device Manufacturer Model Number Serial Number
Analog Accelerometer Module Silicon Designs Inc 2210-010 15489
Triple Output DC Power Supply Agilent E3631A (Rack 3) MY50190084
DAQ Board National Instruments | 183468A-01 (Rack 3) A5199B
ME310 Oscillator Boston University N/A #3
Ruler - - -

Triple Beam Balance

OHaus

5 Data

Table 2: Spring Constant Calibration Data.

Table 1: Equipment List

m [kg]
0.2762
0.3762
0.4762
0.5762
0.6762
0.7762
0.8762
0.9762
1.0762
1.1762
1.2762
1.1762
1.0762
0.9762
0.8762
0.7762
0.6762
0.5762
0.4762
0.3762
0.2762

x [em]
34.7863
32.4862
30.8862
27.9862
26.8862
25.8862
23.2862
22.6863
20.3863
17.6863
17.3863
17.0862
17.7862
18.0862
19.8863
21.3863
26.6863
27.4862
29.1863
30.7863
33.3862

plate, screws, and test mass. Distance x is the length of the spring.

10

Mass m is the combined mass of the collar,

6 Analysis

The analysis of data to produce results can be broken into three sections. The goal of the
first section of the analysis is to determine parameters of the instrument and of the oscillator.
The second section of the analysis involves using signal conditioning steps of the analysis
applies the raw data to generate both the systems spring constant and the position of the
top mass for different motor speeds. The third part of the analysis uses the calculated po-
sition data and calibrated spring constant to determine the other parameters of the system:
damping ratio, natural frequency, and resonant frequency.

6.1 Calibrations

Spring Constant Calibration

This analysis applies to the data contained in Table 2. In order to determine the spring
constant k of the system, a calibration was performed. From Hooke’s Law it is shown
that adding mass atop the spring increases the force on the spring, yielding the following
relationship.

F =mg (20)
mg

20) = (1): k= ——= 21

(20) (1) k=~ (21)
In principle, Az refers to the difference between the observed length of the spring and
the relaxed length of the spring. However in the experimental setup, the true relaxed length
of the spring was unknown. Thus, a surrogate reference length z,.r was defined as the length
of the spring with the collar attached and the plate attached. The corresponding mass m,¢s

is then the mass of the collar, the plate, and the screws. Thus,

Az =2 — Tyey (22)

My =M — Myey (23)

Where the subscript ¢ refers to the control masses placed onto the plate. A linear regres-
sion can be performed using the control masses m; and the measured displacements Az; to
determine a spring constant ky;;, which is simply the inverse of the regression coefficient a.

Accelerometer Calibration

The accelerometer is a transducer which converts acceleration inputs into voltage outputs.
There is an approximately linear functional relationship between the acceleration and the
voltage, thus a linear calibration can be used. Three control accelerations were used in the
calibration; +1g, Og, & -1g. Voltage data for each control point were acquired through the
DAQ board into MATLAB. The static sensitivity K was calculated using a linear regression.

11

6.2 Signal Conditioning

Position Calculation
The input acceleration takes the form of a sinusoid with amplitude A and phase shift ®
offset by gravitational acceleration g:

a(t) = Asin(wt + &g) + g (24)

Accelerometer response given by 2nd order system:

V(t) = K'AM (w)sin(wt + ®¢ + ®(w)) + K'g + O’ (25)

Because the driving frequency w is much lower than the resonance frequency of the ac-
celerometer w,,, we can assume:

M(W)|w<<w7-a =1 (26)
(I)(W)|w<<wra =0 (27)

K’ and O’ are known from the instrument calibration, thus:

) = YOO (28)

A new K and O can be redefined such that

a(t) = KV(t) + O (29)

Now, given the acceleration of the top mass, basic kinematics can be applied to deter-
mine position. Acceleration is the time rate of change of velocity, and velocity is the time
rate of change of position, so position can be calculated through the double integration of

acceleration.
x(t) = /v(t)dt = // a(t)dt (30)

2(t) = / / (KV (1) + O)dt (31)

12

To perform the integral on the raw acceleration data, double cumulative numerical in-
tegration in MATLAB was performed. Because the integration is cumulative, integrating a
sinusoid centered at zero produces a sinusoid centered at the amplitude of the sinusoid. In
order to integrate again, offset created by the first integration must be removed. To accom-
plish this in MATLAB, the results from the first numerical integration were passed through
a high pass filter to remove the offset. Then, the data were integrated once more to yield the
displacement. Because the filter removes any offsets, the instrument offset O can be omitted
from the equation.

() = / KV (t)dt (32)

6.3 Determining System Parameters

With all the raw data analyzed and converted into a position function, the other system
parameters can be determined. Frequency and amplitude of the system response can be
determined from the position graph. By performing a Fourier frequency transform (FFT) on
the position function, the frequency that the system was operating at could be determined by
calculating which frequency was the largest contributing frequency from the FFT. Similarly,
the maximum and minimum displacements can be determined from the graph to determine
amplitude.

max[z(t)] — min[z(t)]

Aupper mass — 9 (33>

By using the above calculated amplitude and the known input amplitude for the bottom
mass, the magnitude plot can be made for each frequency. With the amplitude known for
each frequency, the rest of the parameters can be determined. The frequency at which
the maximum amplitude occurs indicates the resonant frequency w,. With the resonant
frequency, spring constant k and the mass m known, the rest of the system parameters can
be calculated:

Wy = % (34)
Wy = wpy/1 —2¢? (35)
—5-) ¢
1 w ’
(28) — (30): ¢ = 5<1 . <\/Z>) (37)

(38)

13

The damping constant c is:
c=2CVkm (39)

The quality factor Q is:

1
Cuso o

7 Uncertainty Analysis

7.1 Calculations

The uncertainties in each final parameter stem from three individual sources: uncertainty in
the spring constant (Uy), uncertainty in determining the resonant frequency (U,,), and the
uncertainty in the voltage signal (Uy). All other uncertainties are functions of these three,
and can be calculated via error propagation steps.

Spring Constant Uncertainty
Uncertainty in the spring constant is a function of the precision uncertainty of the spring
constant values and the bias uncertainty of the displacement values.

Uk = f(Up,ka Ub,x) (41)

There precision uncertainty U, is calculated as a fit uncertainty, where each data point
has its own value:
Y
The k value resulting from the linear regression is treated as the ky; in the uncertainty
calculation, which yields:

k; (42)

N
\/Zi:l (k’LQ - kj%zt)
Vyit
The bias uncertainties comprising Uy, are hysteresis and resolution of the ruler used. The
total uncertainty. An error propagation was used to combine the precision uncertainty in

the units of k£ with the bias uncertainty in the units of x into a total uncertainty in units of
k. The average of the values of the partial derivative term was used in the calculation.

F 2

This uncertainty method was also used to determine the uncertainty in the instrument sen-
sitivity K.

Upp = £t (43)

Vit

14

Resonant Frequency Uncertainty
Uncertainty in the resonant frequency is primarily due to resolution of the input frequen-
cies.

U, = +U; (45)

Voltage Signal Uncertainty
Uncertainty in the voltage signal from the DAQ board is due to bias uncertainty taken
from the spec sheets for the power supply, the accelerometer, and the DAQ board.

Uy = £,/U2, + U2, (47)

Other Uncertainties

The remainder of the uncertainties can be found by propagating different combinations
of these three uncertainties. The derivations for each uncertainty are lengthy and repetitive
and will not be shown. The final expressions are shown below.

Ug = KUy t? (49)
1

an))

1 1
ve s jE<2<1 —)F 2<2W> .)
U, = j:\/ (2vEkmUe)* + (2¢ TUk)Q (53)

k

7.2 Bias Uncertainty Values

When calculating the bias uncertainty involved in our apparatus, the data sheets of the
equipment were used. In order to determine the maximum uncertainty, the worst case
scenario was used. The uncertainty in the accelerometer was first calculated in terms of
gravity (g) and then converted to voltage (mV) using the calculated static sensitivity and
the nominal value of gravity in meters per second. The uncertainties for both the DAQ
board and power supply were determined using each of the specified full scale voltages.

15

Source of Uncertainty | Value | Units
Accelerometer +185 mV
DAQ Board 4+0.229 | mV
Power Supply +27.5 mV
Spring Hysterisis +0.046 m
Ruler +0.0005 | m

Table 3: Bias uncertainties.

16

8 Results

k= 54.5 [+ 19.5 [Nim] (955%)

0.3 T T T T T T T
o Data
Linear Fit
.25 — — 955 Cl Bounds

Cizplassment, [m]

(a) This graph shows the linear regression line
and the error bounds of the spring constant cali-

bration.

Fori g, [M]

Fores, (M)

I
0.06 0

1
[I] [§]

Displac e ent, (m)

Figure 7: Spring constant calibration results.

17

(b) This graph shows the plot of the raw data
connected by a line to show the hysteresis.

Plot of acceleration versus voltage

08 T T T
] : + Data
: : Linear Regression
B msess B R B R SR R 95% Confidence Interval []

YVoltage (V)

06 | | i

10 -5 0 5 10
Acceleration (mf52)

Figure 8: This graph shows the linear regression and the error bounds of the accelerometer
calibration.

18

Parameter Variable | Value | Uncertainty Units
Slope of Fit a -0.0404 - V/(m/s"2)
Offset of Fit a, 0.1036 0.213 \%

Static Sensitivity K -24.7792 3.5 (m/s"2)/V
Instrument Offset O -2.5676 5.28 m/s"2

Figure 9: Selected displacement plots at knob settings 20 Up, 30 Down, and 50 Up; respec-

Displacement [m] Displacement [m]

Displacement m]

Table 4: Accelerometer Calibration Results

Krob 20 Up

| |
03 5 3 7 9 10
Time [5]
Knob 30 Down
0.2

5
Time [5]
Knob 50 Up

5
Tirme [5]

tively. Corresponding frequencies are 1.37 Hz, 2.44 Hz, and 4.58 Hz.

19

Description Symbol | Value | Uncertainty | Units
Spring Constant k 54.5 + 14.5 N/m
Natural Frequency Wh 18.28 +4.90 rad/s
Damping Ratio ¢ 0.137 +0.067 -
Damping Constant c 0.815 +0.395 kg/s
Mass m 0.1629 - kg
Linear Displacement Xy 6.3 40.05 cm
Max Amplitude A 8.33 +0.35 cm
Resonant Frequency Wy 15.58 +0.63 rad/s
Quality Factor Q 3.69 +0.18 —

Table 5: Parameter values and uncertainties. All uncertainties calculated using a 95%
confidence interval.

20

Knob Setting | Average Frequency (Hz)
20 1.335
22 1.565
24 1.83
26 2.06
28 2.21
30 2.48
32 2.67
34 2.86
36 3.055
38 3.245
40 3.5
42 3.775
44 4.005
46 4.2
48 4.43
50 4.58
52 4.805
54)
56 5.225
58 5.42
60 5.57

Table 6: Knob setting frequencies. Uncertainty: .1067 Hz (95%)

21

Iagnitude Rato

E=0.137, O=3688

o { " [0 ExpeimentalDataUp

: : + Expetimental Data Down
Matural Frequency
Theoretical Curve

— — 953 Cl =

Phase Shift ¢ irad)

pid Lo

E=0137

Theroretical Phase Shift

Matural Frequency

Apid L b

i L i i | i 1 i I
5 10 15 20 25 in kS 40 0 5 10 15 20 25 30 35 40

; ‘ i i ;

Input Frequency (racs) Input Frequency (radis)

(a) Magnitude Ratio (b) Phase Shift

Figure 10: Experimental data and theoretical curves for magnitude ratio. Phase shift only
displays theoretical curve; no data were taken.

9 Discussion and Conclusions

Ultimately, the resulting displacement graphs are consistent with 2nd order system theory.
The values are a little off theoretical because of uncertainty, but given the set up we had,
everything looks pretty good.

Numerical integration is tricky, so perhaps if we used active circuit filters and integrators,
we could have gotten better data.

We were not able to calculate phase lag because we did not know the input function di-
rectly. One way this could be accomplished is by attaching another accelerometer to the
lower mass and simultaneously recording data from both accelerometers. However, the only
information needed to determine phase shift is the relative time between peak of the lower
mass and the peak of the upper mass. The peak of the upper mass can be determined from
the accelerometer data. The timing of the peak of the lower mass can recorded by attaching
something to the lower mass to make an electrical connection or push a button when the
mass reaches the bottom of its stroke. This data would be much simpler to analyze and
could be read into MATLAB on a separate analog input channel.

Ultimately, the resulting displacement graphs generated through our data analysis are
consistent with 2nd order system theory. The magnitude ratios experimentally recorded
are off from the theoretical values; however, this difference can be accounted for by the
experimental setup. Large sources of error were caused by uncertainty in the spring constant
k and the uncertainty caused by numerical integration.

The experimental setup could be improved by replacing the digital filtering and numer-

22

ical integration with active circuit filters and integrators. This process would generate a
continuous signal and prevent interference the computer from using a discrete signal.

Our experimental setup, as is, was not able to calculate phase lag because the input
function is not known directly. One way this input function could be measure is by at-
taching another accelerometer to the lower mass and simultaneously record data from both
accelerometers. This process can be simplified, however, because the only information needed
to determine phase shift is the relative time between peak of the lower mass and the peak
of the upper mass. The peak of the upper mass can be determined from the accelerometer
data. The timing of the peak of the lower mass can be recorded by attaching a device to the
lower mass to make an electrical connection every time the mass reached the bottom of its
stroke. This data would be much simpler to analyze and could be read into MATLAB on a
separate analog input channel.

References

[1] Figliola, Richard S., Beasley, Donald E. Theory and Design for Mechanical Measure-
ments. John Wiley and Sons 2011.

[2] Verplaetse, Christopher. Can A Pen Remember What it Has Written Using Inertial Nav-
igation? An Evaluation of Current Accelerometer Technology., MIT 1995, from mit.edu,
accessed April 2015.

[3] Professor Farny

Appendix

MATLAB Code

All MATLAB code used to perform data acquisition and analysis for the project. In order
of appearance:

1. dag_accel.m: Used to acquire the data from the DAQ Board and save it as .csv and
.mat files.

2. accelerometer_calibration_v3.m: Performs accelerometer calibration; determines K, O,
and U K-

3. statick.m: Perform calibration to determine spring constant k& and uncertainty Uy.
4. accelGUL.m: User interface for analyzing datasets and saving results.

5. filter_code.m, calibration_code, accel2disp.m: Functions used in the accel GUL.m. Each
function is a signal conditioning step.

23

. project_results.m: Loads results saved by accel GUI.m, produces plots for final report.

. fft_freq.m, mag_ratio.m, phase_shift.m: Functions used within project_results.m and
accelGUL.m to perform more analyses and calculations that do not constitute signal
conditioning steps.

24

dag_accel.m

% MATLAB supports M-Series, E-Series, and USB hardware from

National Instruments with the Data Acquisition Toolbox. This basic code
example shows you how to use MATLAB to acquire and analyze data from
National Instrument hardware in 10 commands. Additional commands you
may find useful are included here but commented out.

o 0° o° o

oe

oe

Modified: C Farny, ME310

o

Use this command to determine Board IDs in system, 1f needed
hw = dag.getDevices

% Create an analog input object 'handle' using Board ID "Devl".
i = dag.createSession('ni'");

o))

% Data will be acquired from hardware (BNC) channel 1
ai.addAnalogInputChannel ('Devl', 'ail', 'Voltage');

oo

Configure the analog input channel for single-ended or differential mode
ai.Channels.InputType='SingleEnded';

set the full scale input range (note this range is variable and can be

% changed)

ai.Channels.Range = [-1 1]; S (V)

o\°

--- set triggering ---

Set the sample rate and samples per trigger

Note: These are settable options and you might want to use different
values!

ai.Rate = 50e2; % [Hz]

ai.DurationInSeconds = 10; % [s]

o° o

o

o

oe

Review the basic configuration of the acquisition by typing

the name of the 'handle' variable. Note that the handle is responsible
for transferring information to and from the board and Matlab
i

% Acquire data
data = startForeground(ai);

o o

[\))

fs = ai.Rate; %sampling rate
SampleTime = ai.DurationInSeconds;
dt = 1/fs;%time step [s]

oe

Graphically plot the results
= O:dt:SampleTime-dt;
length(t);

St

$Filter the data
$N.B fs = 50e2 Hz

low cutoff = 1; SLower cutoff frequency Hz
high cutoff = 7.5;%Higher cutoff frequency Hz
order = 3; %Order of the filters being used

%$Low Pass
[b,al] = butter(order,high cutoff/fs, 'low');
filtered y = filter(b,a,data);

%Band Pass (pass the already filtered data through another filter)
[b2 a2] = butter(order,low cutoff/fs, 'high');
band y = filter (b2,a2,filtered y);

$Plot Low Pass filtered data
figure (1)

subplot(2,1,1)

plot (t,data);

title('Raw Data')

xlabel ('Time (s)'")
ylabel ('Voltage (V) ")
subplot(2,1,2)
plot(t,filtered y)
title('Low Pass Filter')
xlabel ('Time (s)'")
ylabel ('Voltage (V) ")

%$Plot Band Pass filtered data
figure (2)

subplot(2,1,1)

plot (t,data);

title('Raw Data')

xlabel ('Time (s)'")

ylabel ('Voltage (V) ")
subplot(2,1,2)

plot (t,band y)
title('Band Pass Filter')
xlabel ('Time (s)'")

ylabel ('Voltage (V) ")

%$Figure 3 displays the fft() performed on the data

axis values = [0,15,0,1]; %Vector for the purpose of ploting everything
fvec = [1l:n/2-1]1*fs/n; %Frequecny vector
figure (3)

subplot (3,1,1)

raw_data=fft (data);
plot(fvec,abs(raw_data(Z:n/2)));
axis (axis_values);

title('Raw Data')

xlabel ('Frequency')

subplot (3,1,2)

low data = fft(filtered y);
plot (fvec,abs(low data(2:n/2)))
axis (axis_values);

title('Low Pass Filter')

xlabel ('Frequency')

subplot (3,1, 3)

band data = fft(band y);

plot (fvec, abs (band data(2:n/2)))
axis (axis values);

title('Band Pass Filter')
xlabel ('Frequency')

%$Save the data into a csv file

user input = input('Save aquired data? (Y/N): '","'s");
if user input == 'Y'
file name = input ('Name of file: ','s');

%Create a data matrix which saves all the acquired and filtered data
%$Data is saved in a csv file with the first column being time, second
%1s raw data, third is low pass filtered data, fourth is band pass
$filtered data

data matrix = zeros(length(t),4);

data matrix(:,1) = t;

data matrix(:,2) = data;

data matrix(:,3) = filtered y;

data matrix(:,4) = band y;

csvwrite (sprintf('$s%s',file name,'.csv'),data matrix);

else
fprintf('%$s', 'No data will be saved.')
end

% Clean up
stop(ai);

accelerometer calibration_v3.m
%Analysis for the accelerometer calibration
%The data was taken and saved in csv files for three input accelerations:

%-9,0,9

close all
clc
clear

%% Load Data from calibration

%Load all the seperate csv files into their respective matricies
%$Columns of each matrix:

%Column 1: Time

%$Column 2: Raw Data

%Column 3: Data through a low pass filter

%Column 4: Data through a band pass filter

negative g matrix = csvread('Negative G Applied.csv');
zero g matrix = csvread('Zero G Applied.csv');
positive g matrix = csvread('Positive G Applied.csv');

%$Ignore the first second to insure that the data taken only after the
%steady state is reached

negative g volts = negative g matrix(5000:50000, 3);

zero g volts = zero g matrix(5000:50000,3);

positive g volts = positive g matrix(5000:50000,3);

%% Linear Fit
acceleration = [-9.81,0,9.81];

voltage = [mean(negative g volts),mean(zero g volts),mean(positive g volts)];

o)

% Linear Fit for the Daya V(x) = O + K*x = a 0 + a 1*x

%Variables used for calculating the sensitivity and offset
N = length(positive g volts); %Number of data points for each voltage
tau = 1.960; ST Value for 95% confidence interval

%Uncertainty for each acceleration point.

U i(3) = tau.*std(positive g volts)./sqrt(N - 1);
U i(2) = tau.*std(zero g volts)./sqgrt(N - 1);

U i(1l) = tau.*std(negative g volts)./sqrt(N - 1);
w = 1./(U_i)."2;

B = sum(w) *sum (w.*acceleration.”2) - sum(w.*acceleration)"2;

a o = (sum(w.*acceleration.”2)*sum(w.*voltage) -
sum (w.*acceleration) *sum(w.*acceleration.*voltage)) /B;

a 1 = (sum(w)*sum(w.*acceleration.*voltage)-
sum(w.*acceleration) *sum(w.*voltage)) /B;

%Y fit for the calibration
y fit = a l.*acceleration + a o;

%% Fit Precision Uncertainty
yx = sqrt((sum((y fit - voltage))”2)/(N-2)); %Standard Deviation for curve
it

Hh 2

U p = tau * S_yx/sqgrt(N);

%% Fit Bias Uncertainty

%Bias Uncertainty is 213 mV

U b = .213; %V

%% Total Fit Uncertainty

U total = sqrt(U p"2 + U b"2);
%Uncertainty Lines for a 95% CI
y up = y fit + U total;

y down =y fit - U total;

%% Static Sensitivity

%Using the equation of fit, get sensitivity values so we can get
%acceleration from a voltage

K=1/a 1; %$(m/s"2)/V
O =a o/a l; %(m/s"2)

%% O Uncertainty

U O = abs(K*.213);

o

% K Uncertainty

o\°

2 Degrees of freedom,

see fit worksheet page 6

= sgrt((sum(K - acceleration/voltage).”2)/2);

S
U K = 4.303*S/sqrt(3);

%% Results

$Print Relavent Results
fprintf ('$s%f%s\n', 'Slope of fit al:
('$s%f%s\n', 'Offset of fit ao:
('"$s%f%s\n', 'Total Fit Uncertainty: +/-',U total,' V')
fprintf ('$s%f%s%f%s\n', 'Static Sensitivity K: ',K,' +/-',U__
('$s%f%s%f%s\n', 'Instrument Offset O: ',0,' +/-',U O,

fprintf
fprintf

fprintf

'ya l," V/(m/s"2)")
',a_o,' AR

%$Plot Voltage as a function of acceleration

figure (1)

plot (acceleration,voltage, '+")

hold on

plot (acceleration,y fit)

hold on

plot (acceleration,y up,':")

hold on

plot (acceleration,y down, ':

grid on

legend ('Data', 'Linear Regression','95% Confidence Interval')

")

title('Plot of acceleration versus voltage')

ylabel ('Voltage (V) ')
xlabel ('Acceleration

$STILL NEED TO FIGURE OUT THE UNCERTAINTY FOR EACH K AND O

(m/s”2)")

(m/s”2)/V")
(m/s”2)")

SNEED TO MAKE AN EQUATION THAT JUST SIMPLY GIVES US ACCELERATION GIVEN A

$CERTAIN VOLTAGE

Statick.m
$David Miller
%4/8/15
$ME310 Project

%$Determining the static spring constant.

%$Theory:
SF=-kx

o)

o

o

k== (F/x)

o

F is the force applied;

We want to find spring constant k,

SO

x 1is the distance moved in response to force F

$Equipment:

Oscillator with plate installed

Set of masses (up to 1kg)

Meter stick

Triple beam balance or digital scale (optional)

o° o o°

oe

%$Procedure:

%1. Record lower collar offset distance from the base. Record mass of the
%collar, supporting plate, and any screws. Record the distance between
%collars (unextended spring length).

%$2. Place a 100g mass on the plate very gently. You do not want the inertia
%of the collar and mass to deflect the spring more than it would under
$frictionless conditions.

%$3. Measure the distance between the collar and the base.

%4. Increase mass in increments of 100g until you reach 1000g. When
%changing the masses on the plate, get someone to hold the collar still so
%$that it doesn't move while you change the masses. This way the hysteresis
$measurements will not be disrupted.

%5. When you reach 1000g, remove masses in 100g increments and follow the
%$same measurement procedure in step 3. Repeat until the plate is fully
%unloaded again.

%% Data:
ocoad('kcalibrate.mat")

[

%% Analysis

%$calculate delta x

x=x/100; $convert from [cm] to [m]

x 0=x(1); %unextended spring length (no
masses, only the collar+plate+screws)

x=-(x-x_0); $make a delta x vector

%$calculate force

g=9.81; %gravitational acceleration
F=m.*g; $convert masses to force [N]

F 0=F(1); %$this is the force of the
collar+plate+screws

F=(F-F _0); %$subtract the initial value from
the rest

%$linear regression

p=linreg(F,x); %get regression coefficients
x fit=polyval(p,F); %evaluate polynomial at control
points

%% Uncertainty Analysis

%X Precision Fit Uncertainty U p fit.x

N=10; snumber control points

nu_ fit=N-2; snu_fit used to determine t
£=2.306; st fit, 95% CI
U p fit.x=uprecision(t,x,x fit,'fit"); $precision uncertainty of fit

%X Bias Uncertainty U b.x

x hyst=x; %define surrogate x vector for
hysteresis calcs

X hyst(11)=[]; $get rid of middle point to make
it symmetrical

diff=x hyst(1:10)-fliplr(x hyst(11:20)); $take the difference coming up
and down

hysteresis=max (diff) ; $find the max of that difference
U _bh.x=hysteresis/2; %define bias uncertainty

U bres.x=.001/2; $resolution of meterstick was lmm
U £.x=RSS([U bh.x U bres.x U p fit.x],2); $calculate total

uncertainty in x

%$Spring Constant Uncertainty

k avg=1l/p(1); $the spring constant is 1/al
because F is on the x axis rather than the y axis. This is essentially out
'average' value for k.

k data=F(2:end-1)./x(2:end-1); %$determine k values for each data
point

n=length (k data) ; $number of k values

nu_k=n-2; %nu to determine t value

t k=2.110; %$determine t value

U pk=uprecision(t_k,k data,k avg*ones(l,n),'fit'); %precision uncertainty of
'fit' of k vals. note that difference being RSS'd is the difference btwn the
k values at each point and the k value determined from the regression

U k=RSS([U _pk U bh.x],2); %use RSS to get total
uncertainty

%% Results

%plot the calibration regression curve
plot (F,x, 'bo', ...
F,x fit,'r-",
F,x fit+U t.x,'r--"', ...
F,x fit-U t.x,'r--")
xlabel ('Force, (N)")
ylabel ('Displacement, (m)"')
legend('Data', 'Linear Fit','95% CI Bounds')
ax_l=gca;
grid on

$make a title

resultstr = sprintf('k = $.1f (+/-) $.1f [N/m] (95%%).\n',k avg,U k); Sprint
the results

title(ax 1, resultstr)

%plot the raw data to show hysteresis
figure;
F fit=k avg.*x fit-p(2);

h=plot(x,F, 'bo', ...

XIFI'b_');
ylabel ('Force, (N)")
xlabel ('Displacement, (m)"')
grid on

project results.m

clear
close all
clc

%$Define Parameters

k=54.4591; %N/m

m accel=28.5;

m collar=134.4;

m=(m_collar+m accel)/1000; %mass, kg

X 0=6.3; %linear displacement of scotch yoke
w_n=sqrt (k/m); %natural frequency

%Load Results from GUI

fid=fopen('batch results 24-Apr-2015.txt');

C=textscan (fid, '$s %s %s'); SRead them into cell arrays of strings
f=str2double (C{2}); %The 2nd and 3rd cells contain frequencies and
displacements

n=length(f) /2; %number of knob settings

X b=str2double (C{3});

f up=f(l:n);

f down=f (n+l:end);

x up=X b (l:n);
x_down=X b(n+l:end);

i _resonance up=find(x_up==max(x_up)); %Find the index corresponding to
resonanant frequency

i resonance down=find (x_ down==max (x_down)); %Find the index corresponding to
resonanant frequency

f r up=f up(i resonance up); %resonant frequency (Hz)
f r down=f down (i resonance _down); %resonant frequency (Hz)
f r avg=mean([f r up f r downl]);

w_r up=2*pi*f r up; %resonant frequency (rad/s)
w_r down=2*pi*f r down; S%resonant frequency (rad/s)
w_r avg=2*pi*f r avg;

w_up=2*pi.*f up;
w_down=2*pi.*f down;

xi_avg=.5*(1—(w_r_ang2)/(w_nA2)); $damping ratio
0=1/(2*xi avg.*sqgrt(l-xi avg”2)); %Quality factor
c=x1 avg*2*sqrt (k*m);

%$Calculate magnitude ratios
X ratio up=x up/X 0; %experimental data
X ratio down=x _down/X 0; %experimental data

ws=linspace (0,1.2*max ([w_up; w_down]))'; %frequency vector
M=mag ratio(ws,w n,xi avg); Stheoretical curve

%Calculate theoretical phase shift
Phi=phase shift(ws,w n,xi avg); S%theoretical curves

$Magnitude Ratio Plot
figure;
plot(w up,X ratio up, 'ro’
w_down,X ratio down, 'r+',...
ws,M, "b=", ...
[w n wn], [0 10], 'r-")
titstrl=sprintf('%.3f',xi avg);
titstr2=sprintf('%.3f',Q);
title(["\x1 = " titstrl ', Q = ' titstr2], 'FontSize',b1l4);
xlabel ('Input Frequency (rad/s)','FontSize',12)
ylabel ('Magnitude Ratio', 'FontSize',12)
legend ('Experimental Data Up', 'Experimental Data Down', 'Theoretical
Curve', 'Natural Frequency')
grid on
axis ([0 max(ws) 0 1.2*max(M)])

%Phase Shift Plot
figure;
plot (ws,Phi, 'b-", ...
[wnwnl],[0,-2%pi], 'r-")
legend ('Theroretical Phase Shift', 'Natural Frequency')
xlabel ('Input Frequency (rad/s)','FontSize',12)
ylabel ('Phase Shift \Phi (rad)', 'FontSize',12)
set (gca, 'YTick', [-pi -3*pi/4 -pi/2 -pi/4 0],...

'YTickLabel', {'-pi' '-3pi/4' '-pi/2' '-pi/4' '0'},...
'FontSize',12);

title(['\x1i = ' titstrl], 'FontSize',14)

grid on

axis ([0 max(ws) -pi 01])

function accelGUI ()
%accelGUI GUI for analyzing and displaying data from an accelerometer.
% David Miller Created 4-10-2015

%$Sections:

%$1: Define Main Figure

%2: Define Object Positions
%3: Define GUI Objects

%4: Callback Functions

%$5: Initialize GUI

%$6: Other Functions

clear
close all
clc

global condition timevector rawvoltage displacement velocity filtered voltage
%declare them global so they don't have to be loaded to other functions
condition=0;

%$this is how the load and analyze buttons communicate and know what's up

have results=0;

%% 1: Define Main Figure
main figure h = figure(...
'Visible', 'off', ...
'Units', 'normalized', ...
'Position', [0.15 0.20 0.8 0.85],...
'Name', '"ME310 Position Transduction GUI: Accelerometer', ...
'Color',[0.8 0.8 0.8]...
) ;

movegui (main figure h, 'center')

%clear figure window
clf

o

% 2: Define Object Positions
'Position', [left bottom width height]
object handle.left =
object handle.right = ... etc.

o

o° o

buffer=.025; %buffer space bewteen objects

panel.width=.25;

panel.height=.25;

panell.bottom=.7;
panel2.bottom=panell.bottom-panel.height-buffer;
panel.left=2*buffer;

Traw_axes
raw_ax.left=5*buffer+panel.width;
raw_ax.bottom=.7+buffer;
raw_ax.width=1- (buffer+raw ax.left);
raw_ax.height=.2;

sfilter axes

filt ax.left=raw ax.left;

filt ax.bottom=panel2.bottom+.5*buffer;
filt ax.width=raw_ax.width;

filt ax.height=raw_ax.height;

sfft axes

fft ax.left=panel.left;

fft ax.height=1-2* (panel.height+4*buffer);
fft ax.width=panel.width;

fft ax.bottom=3*buffer;

Tpos_axes

pos_ax.left=raw _ax.left;
pos_ax.bottom=fft ax.bottom;

pos ax.width=raw ax.width;
pos_ax.height=fft ax.height-buffer;

%load button
loadb_h.bottom=4*buffer;

loadb _h.width=.35;
loadb_h.height=.2;
loadb_h.left=.5*(l-loadb_h.width);

%analyze button

analb h.width=loadb h.width* (2/3);
analb h.height=loadb h.height;
analb h.left=.1*(l-loadb_h.width);
analb h.bottom=loadb h.bottom;

%analyze all button
analallb.width=analb h.width+3*buffer;
analallb.height=analb h.height;
analallb.left=.5* (1-analallb.width);
analallb.bottom=analb h.bottom;

%$save button

saveb _h.width=loadb h.width* (2/3);
saveb_h.left=.9* (1-loadb h.width)+(1/3)*loadb h.width;
saveb h.bottom=loadb h.bottom;

saveb h.height=locadb h.height;

Gmmm e labels/edits-——==-==-==----—-———-—---———~

%$load label

load lab.width=.6;
load lab.height=.2;
load lab.left=.2;
load lab.bottom=.7;

%load edit

load edit.left=locad lab.left;

load edit.bottom=locad lab.bottom-(load lab.height+buffer);
load edit.width=load lab.width;

load edit.height=locad lab.height;

%$static sensistivity label
sens_lab.width=.35;
sens_lab.height=.2;
sens_lab.left=2*buffer;
sens lab.bottom=.7;

$static sensistivity edit

sens_edit.width=sens lab.width;

sens_edit.height=sens lab.height;

sens_edit.left=sens lab.left;

sens_edit.bottom=sens lab.bottom-(sens lab.height+buffer);

%toggle filter button

filter toggle.width=.35;

filter toggle.height=.2;

filter toggle.left=.9*(l-loadb_h.width);
filter toggle.bottom=sens edit.bottom;

%% 3: Define GUI Objects

%$Panel 1
panel l=uipanel('Title', 'Load Raw Data', 'FontSize',12,...
'BackgroundColor', 'white', ...
'Units', '"Normalized', ...
'Position', [panel.left panell.bottom panel.width panel.height]);

) S
o]
%$Panel 2

panel 2=uipanel('Title','Analysis Options','FontSize',12,...
'BackgroundColor"', 'white', ...
'Units', 'Normalized', ...
'Position', [panel.left panel2.bottom panel.width panel.height]);

SFFT Plot Axes
fft axh=axes('Visible','on',
'Units', '"Normalized', ...
'Parent',main_ figure h, ...
'Position', [fft ax.left fft ax.bottom fft ax.width fft ax.height]);

$title + labels

title ('Magnitude Spectrum')
xlabel ('Frequency (Hz)")
ylabel ('Magnitude')

grid on
S ©
o o

%Raw Data Axes
raw_axh=axes ('Visible','on', ...
'Units', '"Normalized', ...
'Parent',main_ figure h, ...
'Position', [raw_ax.left raw ax.bottom raw ax.width raw ax.height]);

$title + labels
title('Raw Data')
xlabel ('Time (s)'")
ylabel ('Voltage (V) ")

grid on
S o
o E]

$Filtered Data Axes
filt axh=axes('Visible','on',...
'Units', '"Normalized', ...

'Parent',main_ figure h, ...
'Position', [filt ax.left filt ax.bottom filt ax.width filt ax.height]);

$title + labels
title('Filtered Data')
xlabel ('Time (s)'")
ylabel ('Voltage (V) ")

grid on
S e o
o o

%$Position Data Axes
pos_axh=axes ('Visible','on',
'Units', '"Normalized', ...
'Parent',main figure h, ...
'Position', [pos ax.left pos ax.bottom pos ax.width pos ax.height]);

$title + labels
title('Position'")
xlabel ('Time (s)'")
ylabel ('Position (m) ")

grid on
g g
o o

$Load Edit Box and Label

%label
load labh=uicontrol ('Style', 'Text', ...

'Visible', 'On', ...

'Parent',panel 1,...

'String', 'Filename (with extension)', ...

'Units', '"Normalized', ...

'BackgroundColor', [1 1 1],...

'Position', [load lab.left load lab.bottom load lab.width
load lab.height], ...

'FontSize',12);

%edit box
load edith=uicontrol('sStyle','Edit', ...

'Visible', 'On', ...

'Parent',panel 1,...

'Units', 'Normalized', ...

'BackgroundColor', [1 1 1],...

'Position', [load edit.left load edit.bottom load edit.width
load edit.height], ...

'FontSize',12);

%$Static Sensitivity Edit Box and Label
sens_labh=uicontrol ('Style', 'Text', ...
'Visible', 'On', ...
'Parent',panel 2,...
'Units', '"Normalized', ...
'BackgroundColor', [1 1 1],...
'String', 'Static Sensitivity [(m/s"2)/V]',...

'Position', [sens_lab.left sens lab.bottom sens lab.width
sens_lab.height], ...
'FontSize',12);

sens_edith=uicontrol('Style', 'Edit', ...

'Visible','On', ...

'Parent',panel 2,...

'Units', '"Normalized', ...

'BackgroundColor', [1 1 1],...

'Position', [sens _edit.left sens edit.bottom sens edit.width
sens_edit.height], ...

'FontSize',12);

o)

$Filter Toggle Button

filter toggle h=uicontrol ('Style', 'ToggleButton', ...

'Visible', 'On', ...

'Units', '"Normalized', ...

'Parent',panel 2, ...

'Position', [filter toggle.left filter toggle.bottom filter toggle.width
filter toggle.height], ...

'FontSize',12, ...

'CallBack',@togglefilterfcn);

%Load Button

load b=uicontrol('Style', "Pushbutton', ...
'Visible', 'on', ...
'Units', '"Normalized', ...
'Parent',panel 1,...

'Position', [loadb_h.left loadb h.bottom loadb_h.width loadb _h.height],...

'FontSize',12, ...
'String', 'Load', ...
'"Callback',@startbuttonfcn) ;

%Analyze Button

analyze b=uicontrol ('Style', "Pushbutton', ...
'Visible', 'on', ...
'Units', 'Normalized', ...
'Parent',panel 2,...

'Position', [analb h.left analb h.bottom analb h.width analb h.height],...

'FontSize',12, ...
'String', "Analyze', ...
'Callback',@analbuttonfcn);

%$Analyze All Button
analyzeall b=uicontrol('Style', "Pushbutton', ...
'Visible', 'on', ...
'Units', '"Normalized', ...
'Parent',panel 2,...
'Position', [analallb.left analallb.bottom analallb.width
analallb.height], ...
'FontSize',12, ...

'String', "Analyze All', ...
'Callback',@analallbuttonfcn);

o)

$Save Button

save b=uicontrol ('Style', 'Pushbutton', ...
'Visible', 'on', ...
'Units', '"Normalized', ...
'Parent',panel 2,...
'Position', [saveb _h.left saveb h.bottom saveb h.width saveb h.height], ...
'FontSize',12, ...
'String', 'Save', ...
'Callback',@savebuttonfcn);

o)

%Load Button Pressed ===> Load Data

function startbuttonfcn (source,evdata)

fprintf ('Load Button Pressed\n');
if isempty(get(load edith, 'String'))==

error ('Error: No file name entered')

set (load edith, 'BackgroundColor', [1 0 0])
1se
%$%% load data
filename=get (load edith, 'String'");
set (load edith, 'BackgroundColor', [1 1 1])
file extension=filename ((end-2):end);
switch file extension

case 'mat'

®

try
load (filename) $load the .mat file
catch

error ('Error: File with that name does not exist.')
%if it doesn't load, display error
set (load edith, 'BackgroundColor', [1 0 0]) %and change
the BG color to red
end
timevector=data(:,1); %assign the wvariables
rawvoltage=data(:,2);
condition=1;
fprintf ('Data Load Successful. File type: .mat\n')
case 'csv'
$load csv file
condition=1;
fprintf ('Data Load Successful. File type: .csv\n')
otherwise
warning ('Warning: File extension not supported. No data
loaded. Please try another file.')
condition=0;
end
end

o)

%Analyze Button ===> Filters, FFT, Integration, Plot

function analbuttonfcn (source,evdata)
if condition==
warning ('Warning: No data has been loaded. Please load data before
attempting to analyze.')
elseif condition==
fprintf ('Data has been loaded successfully.\n');

Fm—m———— = This is where all the MAGIC happens!------—-—----——- %
%% plot raw data on the raw data axes
axes (raw_axh) smake the raw data axes
current
cla

plot (timevector, rawvoltage)
title('Raw Data')

xlabel ("Time (s) ")

ylabel ('Voltage (V) ")

grid on

%$%% take fft of the data

t samp=timevector (2)-timevector (1) ;
samplingrate=1/t samp;

ly, f,wc]=£fft freg(rawvoltage,samplingrate);
fprintf ('FFT Complete.\n")

%$%% plot the magnitude spectrum

axes (fft_axh) $make the fft axes current
cla

semilogx (f,vy)

title('Magnitude Spectrum')

xlabel ('Frequency (Hz)")

ylabel ('"Amplitude (V) ')

grid on

$%% filter data
state=get (filter toggle h, 'Value');
switch state
case 0 %no filter
fprintf ('Data not filtered.\n'")
filtered voltage=rawvoltage;
case 1 %filter
filtered voltage=filter code(rawvoltage);
[y2 £2 f sig]=fft freqg(filtered voltage,samplingrate);
%$run data through filter (s)
hold on
semilogx (f2,y2,'r="); S%Splot the fft of the filtered data
legend ('Raw Data', 'Filtered Data')
fprintf ('Filtering Complete.\n')

$%% plot filtered data on filtered axes

axes (filt axh) $make the filtered
data axes current

cla

plot (timevector, filtered voltage)

title('Filtered Data')

xlabel ('Time (s) ')

ylabel ('Voltage (V) ")

grid on
end

%%% calibrate the filtered voltage to acceleration values
acceleration=calibration code (filtered voltage,sens_edith);
fprintf('Calibration Complete.\n')

$%% double integration
[displacement velocity]=accel2disp (timevector,acceleration);
fprintf ('Integration Complete.\n'")

%$%% plot double integration (aka position)

axes (pos_axh) $make the position data axes
current

cla

plot (timevector,displacement)

title('Displacement')

xlabel ('Time (s) ')

ylabel ('Distance (m) ")

grid on

%$%% calculate pk-pk displacement
=find(and(timevector>6, timevector<8)) ;

disp end=displacement (I);

X pp=max (disp end)-min (disp_ end);

fprintf ('The peak linear displacement is %.2f
centimeters.\n',100*X pp);

twrite the frequency and the pk-pk displacement to a
$.txt file

fid=fopen ('frequencies.txt','a');
if fid==-1
warning('''frequencies.txt'' not opened.');
else
fprintf ('File opened.\n');
end
filename=get (load edith, 'String');
filename (end-2:end)=[1];
fprintf (fid, 'Ss $.2f %.2f\n',filename, f sig,X pp*100);
have results=1;
end
end

%Analyze All Button
function analallbuttonfcn (source,evdata)

f new=figure ('Visible','Off", ...
'Units', "'normalized', ...
'Position', [0.3 0.45 0.3 0.471,...
'Name', "Analyze All', ...
'Color',[0.93 0.93 0.931);

rootfilelabel=uicontrol ('Style', "Text', ...
'Units', '"Normalized', ...
'Position', [.1 .85 .8 .171,...
'String', '"Enter the root file name, with extension, using the
"snum;" tag to denote where the number is.');

rootfileedit=uicontrol ('Style','Edit', ...
'Units', '"Normalized', ...
'BackgroundColor', [1 1 1],...
'Position', [.35 .75 .3 .1]);

istartlabel=uicontrol ('Style', 'Text', ...
'Units', 'Normalized', ...
'Position', [.15 .6 .2 .17,
'String', 'Starting Value');

iiterlabel=uicontrol ('Style', '"Text', ...
'Units', '"Normalized', ...
'Position', [.4 .6 .2 .1],...
'String', 'Step Size');

istoplabel=uicontrol ('Style', '"Text', ...
'Units', '"Normalized', ...
'Position', [.65 .6 .2 .171,...
'String', 'Ending Value');

istartedit=uicontrol ('Style', 'Edit', ...
'BackgroundColor', [1 1 1],...
'Units', '"Normalized', ...
'Position', [.15 .5 .2 .11);

iiteredit=uicontrol ('Style', 'Edit', ...
'BackgroundColor', [1 1 1],...
'Units', "Normalized', ...
'Position', [.4 .5 .2 .1]);

istopedit=uicontrol ('Style', 'Edit', ...
'BackgroundColor', [1 1 17,...
'Units', '"Normalized', ...
'Position', [.65 .5 .2 .11);

1

size.")

gobutton=uicontrol ('Style', 'Pushbutton', ...

'Units', "Normalized', ...
'Position', [.35 .2 .3 .11,...
'String', 'Go', ...
'Callback',@gofcn);

rl

r2

uibuttongroup ('Visible', 'off'"', ...
'Position', [.25 .35 .5 .1],...
'BackgroundColor',[1 1 1],...
'SelectionChangeFcn',@SelectionChg) ;

uicontrol (bg, 'Style', ...
'radiobutton', ...
'String', 'Up’', ...
'Units', '"Normalized', ...
'Position', [.1 .2 .4 .7],...
'HandleVisibility', 'off'");

uicontrol (bg, 'Style', "radiobutton', ...
'String', 'Down', ...
'Units', 'Normalized', ...
'Position', [.6 .2 .4 .7
'HandleVisibility', 'off

set (bg, 'Visible','On');
set (f new, 'Visible','On');

[

Y=—=—====================Cg]l 1lback Functions====== ==

function gofcn (source,evdata)

%When the 'Go' button is pressed:
fprintf ('Go Button Pressed\n')
il=str2double (get (istartedit, 'String'));
i2=str2double (get (istopedit, 'String'));
step=str2double (get (iiteredit, 'String'));
if round(step) ~=step

error ('Step size invalid. Please enter an integer step

end

upordown=get (get (bg, 'SelectedObject"), 'String');

try %in case someone enters negatives wrong for the step size
index=il:step:12;

catch
index=il:-step:12;

end

n=length (index) ;

rootfile=get (rootfileedit, 'String');

for i=1:n %create list of filenames
num=num2str (index (i)) ;

oe

state

filename{i}=strrep(rootfile, '# ', num); Sreplace the tag in
the root filename with proper number

end
fprintf ('Filenames Organized\n')

g m e Analysis—-———————————————————————————
for 1 = 1:n %for all files
load(filename{i}, 'data') %load data
timevector=data(:,1); %assign the variables
rawvoltage=data(:,2);
G——m—————— This is where all the MAGIC happens!-----—-—-----

t samp=timevector (2)-timevector (1) ;
samplingrate=1/t samp;

ly,f,wc]=£fft freg(rawvoltage,samplingrate); %step 1: FFT
state=get (filter toggle h, 'Value');

o)
°

o)
°

switch state %do different things depending on toggle button

case 0 %$no filter
fprintf ('Data not filtered.\n")
filtered voltage=rawvoltage;
case 1 S$filter

$%% filter the voltage signal
filtered voltage=filter code(rawvoltage);

[y2 £f2 £ sig]=fft freq(filtered voltage,samplingrate); S%run
data through filter(s)

fprintf ('Filtering Complete.\n'")
end

%%% calibrate the filtered voltage to acceleration values
acceleration=calibration code(filtered voltage,sens_edith)
fprintf('Calibration Complete.\n'")

%% double integration

’

[displacement velocity]l=accel2disp (timevector,acceleration);
f

printf ('Integration Complete.\n')

%%% calculate pk-pk displacement
I=find(and(timevector>6, timevector<8));

disp _end=displacement (I);

X pp=max (disp end)-min(disp_end);

$fprintf ('The peak linear displacement is %.2f

centimeters.\n',100*X pp);

$write the frequency and the pk-pk displacement to a
$.txt file

results fname=['batch results ' date '.txt'];
fid=fopen(results fname, 'a');
if fid==-1

warning ([results fname ' not opened.']);
else

fprintf ('File opened.\n'");
end

file=filename{i};

to file'

Button

is the

SFilter

[

sstep

file(end-3:end)=[]; %get rid of the extension
fprintf (fid, 'Ss $.2f %.2f\n',file,f sig,X pp*100); Sprint

s FID
fprintf ('File appended.\n');
$save graph data results to .mat file
results=[timevector displacement velocity filtered voltage];
filename save=['Results ' file '".mat'];
try
save (filename save, 'results');
fprintf ('Results Saved.\n')
catch

warning ('Warning: Results were not saved.')
end
end
end

function SelectionChg (source,eventdata)
%SelectionChg Displays selection changes for radio buttons in UI

o\

Groups, or returns strings of selected objects [radio buttons].
To use, simple enter this function as the first line of the
SelectionChangeFcn Callback Function. The output of the function

oo

oo

o

handle of the selected object.

disp([get (get (source, 'SelectedObject'), 'String') 'Selected']);

Toggle Button Pressed ===> Turn on/off filter plot and analysis

function togglefilterfcn (source,evdata)

state=get (filter toggle h, 'Value');
switch state

axes current

case 0
set (filter toggle h, 'String', 'Filter Off'");
axes (filt axh) %$make the filtered data
cla
set (filt axh, 'Visible', 'Off");
case 1

set (filt axh, 'Visible','On');
set (filter toggle h, 'String', 'Filter On');

axes current

try
axes (filt axh) %$make the filtered data
cla

plot (timevector, filtered voltage)
title('Filtered Data')

xlabel ('Time (s) ')

ylabel ('Voltage (V) ")

grid on
catch
end

o)

%$Save Results
function savebuttonfcn (source,evdata)
fprintf ('Save Button Pressed\n')

switch have results

case 0
warning ('No analysis has been performed. No results saved.')
case 1
results=[timevector displacement velocity filtered voltage];
filename save=[datestr(now) ' Results.mat'];

try
save (filename save, 'results');
fprintf ('Results Saved.\n')
catch
warning ('Warning: Results were not saved.')
end
end
end

$% 5: Initialize the GUI

K static=24.995694;

set (filter toggle h, 'Value',1,...
'String', 'Filter On')

set (sens_edith, 'String',K static)

set (main_ figure h, 'Visible', 'On") $make GUI visible

end

%% 6: Other Functions

Rt et e et
function [y, f,f max] = fft freqg(data, fs)

$fft freqg Magniture spectrum with corresponding frequencies.

Uses a Discrete Fourier Transform (FFT) to determine magnitude spectrum
fo the signal. Also finds corresponding frequencies so the frequencies
of the different magnitudes can be known.

[Y,F] = fft freq(DATA,FS); Where DATA is a vector (or matrix) of data
sampled at FS Hertz. Output Y is vector containing the magnitude
spectrum, and output F is a vector containing the corresponding
frequencies.

o o° o° oo

o oo

oe

L=length (data) ;
NFFT = 2”%nextpow2(L); % Next power of 2 from length of vy
Y=fft (data,NFFT) /L;

y 2*abs (Y(1:NFFT/2+1));
f = fs/2*1inspace (0,1,NFFT/2+1);

f max=f (find(y==max (y(y<25))));

end
—— Filter Code-——=——=="—"="-"—"—"—"—"—"—"—"—"—"—"—"-"—"—~——~—~——(—~————
function [filtered voltage] = filter code(rawvoltage)

$filter code Apply bandpass filter to raw voltage data.

$Sampling Parameters

fs = 50e2; $sampling rate [Hz]
SampleTime = 10; $sample duration [s]
dt = 1/fs; $time step [s]

%$Time Vector
t = 0:dt:SampleTime-dt;

$Butterworth Filter Parameters

low cutoff = 1; SLower cutoff frequency Hz
high cutoff = 7.5;%Higher cutoff frequency Hz
order = 3; %Order of the filters being used

%$Low Pass Filter (removes noise)
[b,a] = butter(order,high_cutoff/fs,'low');
filtered y = filter (b, a, rawvoltage);

%$High Pass Filter (removes DC offset)
[b2 a2] = butter(order,low cutoff/fs, 'high');
filtered voltage = filter (b2,a2, filtered y);

$Notch Filter (also removes dc offset)
$[b2 a2]=iirnotch (.01, .5);
tfiltered voltage = filter(b2,a2,filtered y);

end
e Calibration Code-——===="=""=""="="—"—"—"—"—"—"—"—-"—"—~—~—~—~—~—~————
function [acceleration] = calibration code(filtered voltage,sens_edith)

%calibration code Apply calibration to the filtered data to convert it to

%an acceleration.

if isempty(get(sens edith, 'String'))==1
error ('Error: Please enter a value for static sensitivity.')
else
K=str2double (get (sens_edith, 'String'));
acceleration=filtered voltage.*K;

end

end

e Numerical Integration-------------"-"---—"—"—"—————"—————
function [r,varargout] = accel2disp(t,a)

%accel2disp Double integration from acceleration to displacement.

o)

% velocity.

% Performs a double numerical integration to transform acceleration to

% DISPLACEMENT = accel2disp (TIME,ACCELERATION, CUTOFF FREQ); where
ACCELERATION is a

vector of acceleration values recorded at TIME times. DISPLACEMENT
contains the resulting displacements at TIME times. CUTOFF FREQ is the
cutoff frequency in Hz.

o oe

oe

% [DISPLACEMENT, VELOCITY] = accel2disp (TIME,ACCELERATION, CUTOFF FREQ) ;
optionally
% returns the velocity as well as the displacement.

n=nargout;

$Define Sampling and Filter Parameters

t step=t(2)-t(1); %get sampling rate from data
f samp=1/t step; sconvert to frequency

order = 3; $0rder of the filters being

used

normalized wc = (.001)/(f samp/2); $Normalized cutoff frequency

%$Integrate Acceleration
v=cumtrapz (t,a);

$Filter Velocity

[B1 Al] = butter (order,normalized wc, 'high'"); $create filter with
parameters

v_filt = filter(B1l,Al,v); $filter data

if n==

varargout{l}=v_filt;
end
r=cumtrapz (t,v_filt);

end

function [y,f,f c] = fft freqg(data, fs)

$fft freq Magniture spectrum with corresponding frequencies.

Uses a Discrete Fourier Transform (FFT) to determine magnitude spectrum
fo the signal. Also finds corresponding frequencies so the frequencies
of the different magnitudes can be known.

[Y,F] = fft freq(DATA,FS); Where DATA is a vector (or matrix) of data
sampled at FS Hertz. Output Y is wvector containing the magnitude
spectrum, and output F is a vector containing the corresponding
frequencies.

o0 0P o° o° o° o°

o

L=length (data) ;
NFFT = 2”%nextpow2(L); % Next power of 2 from length of y
Y=fft (data,NFFT) /L;

2*abs (Y (1:NFFT/2+1));
fs/2*1linspace (0,1,NFFT/2+1) ;

Yy
f

f c=f(find(y==max (y (y<25))));

end

function [M] =mag ratio (omega,varargin)

%mag ratio Calculate Magnitude Ratio for 1lst & 2nd Order Systems.
M=mag ratio (OMEGA, TAU); For 1t Order Systems.

M=mag ratio (OMEGA,OMEGA N,XI); For 2nd Order Systems.

o

o\

n=nargin;
switch nargin
case 2
tau=varargin{l};
denominator=sqgrt (1+ (omega.*tau) ."2);
M=1./denominator;
case 3
omega n=varargin{l};
xi=varargin{2};
denominator=sqrt ((1-
(omega./omega n).”"2)."2+(2.*xi.* (omega./omega n))."2);
M=1./denominator;
end
end

function [phi] = phase_ shift (omega,varargin)

$phase shift Calculate Phase Shift for 1lst & 2nd Order Systems.
% PHI=phase shift (OMEGA, TAU); For lst Order Systems.

% PHI=phase shift (OMEGA,OMEGA N,XI); For 2nd Order Systems.

n=nargin;
switch n
case 2
tau=varargin{l};
phi=-atan (omega.*tau) ;
case 3
omega n=varargin{l};
xi=varargin{2};
fraction=omega./omega n;
numerator=2.*xi.* (fraction);
denominator=1-(fraction) .”"2;
argument=numerator./denominator;
phi=-atan (argument) ;
phi(fraction>=1)=phi (fraction>=1) -pi;
end

end

